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Abstract Independent component analysis (ICA) combined
with Elman recurrent neural network (ERNN) regression as a
hybrid approach named ICA-ERNN was proposed for the
simultaneous spectrofluorimetric determination of organic
pollutants. Fluorescence spectra of these compounds under
study are strongly overlapped, which does not permit direct
determination without prior separation by conventional spec-
trofluorimetry. ICA is a blind source separation (BSS) method
aiming at extracting independent source variables and their
corresponding concentration profiles from the observed fluo-
rescence spectra of chemical mixtures without using any prior
knowledge about the components. The proposed method
combining the idea of ICA denoising with ERNN calibration
provides the ability for enhancing the extraction of character-
istic information and the noise removal as well as the quality
of regression. The relative standard errors of prediction
(RSEP) obtained for all components using ICA-ERNN,
ERNN and partial least squares (PLS) were compared. Exper-
imental results demonstrated that the ICA-ERNN method had
better result than ERNN and PLS methods and was successful
even when there was severe overlap of fluorescence spectra.

Keywords Independent component analysis . Elman
recurrent neural network . Spectrofluorimetry . Organic
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Introduction

Spectrofluorimetry has been widely used in biological and
environmental analysis because it is simple, rapid, and has

high sensitivity, moderate selectivity and relatively low cost.
In complex samples, however, the presence of fluorescence
spectral overlap of multi-components hinders the determina-
tion of several compounds in their mixtures by conventional
method without prior separations. Nowadays, due to the easy
and fast acquisition of data, chemometric methods have been
widely applied to solve the problem of overlapping signals
[1–6]. Researchers seek to use chemometric techniques to
maximize the information obtained from raw data. Several
chemometric methods such as principal component analysis
(PCA) and partial l east squares (PLS) have recently emerged
as fast growing techniques; however, comparing to spectrom-
etry, there are only a few references to chemometric methods
dedicated to fluorescence spectral problems [7, 8]. Recently,
Considerable interest has arisen regarding the independent
component analysis (ICA) techniques [9, 10] that specifically
address the areas such as medical signal analysis, image
process, speech recognition, fault detection, statistical process
monitoring and analytical data analysis [11–13]. ICA is a
newly developed signal processing technique aiming at solv-
ing related blind source separation (BSS) problem. ICA can be
used to extract independent source variables and their
corresponding concentration profiles from the observed fluo-
rescence spectra of chemical mixtures without using any prior
knowledge about the components under the assumption that
source variables are statistically independent. Being common-
ly considered as a further development of principal compo-
nent analysis (PCA), the ICA model is similar to PCA. The
main difference between ICA and PCA is that the ICA finds
independent and non-Gaussian independent components
(ICs) and the PCA finds orthogonal principle components
(PCs). In probability theory, independent is a high-order sta-
tistic. Thus, ICA involves high-order statistics with no orthog-
onal constraint and is considered to be more powerful in the
multivariate data analysis. Like PCA, ICA has already been
used as a pretreatment method in order to reduce fluorescence
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spectra dimension and to avoid redundancy information.
These characteristics of ICA make it possible to make dimen-
sion reduction and to extract ICs and mixing matrix from
observed complex fluorescence spectra. The mixing matrix
resulted from the ICA represents the relative concentration
level of the ICs. The model of the mixing matrix and concen-
tration matrix was build by ERNN regression. Artificial neural
network (ANN) is one of the most broadly used mathematical
algorithms for regression problems [14]. ANN is a mathemat-
ical model of which composition is inspired by the structure of
human brain. Recently, it has been proposed that ANN can be
used to solve regression problems by acting as non-parametric
calibration methods, which have the ability to learn from a set
of examples without requiring any knowledge of the model
type and generalize this knowledge to new situations [15, 16].
ANN has the outstanding power for modeling both linearity
and non-linearity systems. Presently the most widely used
ANN is a multilayer feedforward network (MLFN) with back
propagation algorithm (BP). However, the BP-MLFNmethod
often has the deficiency of slow convergence, is prone to the
existence of many local minima during training, and tends to
overfit. Much attention has been paid to solve these problems
and to facilitate the training process into the global minimum.
An ANN called Elman recurrent neural network (ERNN) was
used in this case. It was introduced into the ANN literature by
J.L. Elman in 1990 [17]. A recurrent neural network (RNN)
has recurrent links between its layers and uses these links to
provide networks with dynamic memory. In the Elman net-
work, a so-called context layer, which provides the network
with memory, is added to the conventional feedforward neural
network. The RNN is able to tackle the linear and non-linear
relationships between fluorescence spectra and concen-
trations and reduce the computational complexity of the
training procedure. Until now, RNN has rarely been
applied to analytical chemistry [18]. In this case, an
ICA based ERNN regression (ICA-ERNN) method was
developed to perform simultaneous spectrofluorimetric
determination. The approach of ICA combined with
ERNN seems to be the first application to the simulta-
neous spectrofluorimetric determination of biphenyl,
naphthalene and benzotriazol, which are highly toxic
and have carcinogenic effects. Therefore, it is very
important to detect and monitor biphenyl, naphthalene
and benzotriazol in biological and environmental sam-
ples. These factors have led to develop newer and faster
analytical methods combining chemometrics and spec-
trofluorimetry for improved selectivity and sensitivity.
The proposed method was successfully applied to the
simultaneous determination of biphenyl, naphthalene and
benzotriazol mixtures in which their fluorescence spectra
are overlapped. Its ability of improving the performance
of simultaneous multicomponent determination was
clearly demonstrated.

Theory

Independent Component Analysis

ICA is a statistical data processing technique that aims
to decompose observed analytical signals derived from
multicomponent mixture into pure signals and their con-
centration profiles under the assumption that the source
signals are statistical independent. ICA can be expressed
as the following:

X ¼ AS ð1Þ
Where X is m × n observed data matrix, S is k × n independent
source matrix, and A is m × k data matrix of unknown
concentrations, called the mixed matrix. Here m is the number
of observed mixture, n denotes the number of counts over
wavelength and k is the number of independent components.
The goal of the ICA is to estimate the mixing matrix A and
independent source matrix S from the observed data matrix.
The problem is finding the unmixing matrix W such that S 0

WX. When W is an inverse of the mixing matrix A, the
estimated independent source signals should equal to the
original independent source signals. The most task of ICA is
to find out the unmixing matrix W based on the principle that
the estimated S independent source signals become as inde-
pendent of each other as possible. Thus, the task turns into an
optimization problem under the constraints of independency.
A large number of ICA algorithms [19, 20] have been pro-
posed including FastICA, joint approximate diagonalization
of eigenmatrices (JADE), Infomax, Kernel ICA (KICA) and
mean field ICA (MF-ICA). In this paper the JADE algorithm
is applied to perform ICA operation. The JADE algorithm
uses joint diagonalization of a set of fourth-order cummulant
matrices. For the details of JADE algorithm please refer to
references of this paper [21, 22]. In the first step of the JADE-
ICA algorithm, the observed data matrix X has been whitened
to remove any correlation among random variables. One
popular method for whitening is to use the eigenvalue decom-
position (EVD) of the covariance matrix of X [9]. Whitening
also can reduce the complexity of the problem.

Elman Recurrent Neural Network

ERNN consists of four layers—the input layer, the context
layer, the hidden layer and the output layer. The input layer
does not process information; it serves only to distribute input
data among the hidden layers. The input layer is the first layer
with one node for each variable that is representative of the
characteristics of the problem. The hidden layer is essentially
the same for MLFN, which receives input data and is respon-
sible for processing the data. The number of hidden nodes is
an adjustable parameter. In the hidden layer a non-linear
hyperbolic tangent sigmoid function is used as the transfer
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function. In general, there are fewer nodes in the hidden layer
than in the input layer; the transformation from input to hidden
layer represents a dimensionality reduction. The last layer is
the output layer consisting of one node for each variable to be
investigated. In output layer a linear transfer function is used.
In this case, output layers output predicted concentrations of
the three kinds of analytes. Similar to regular feedforward
neural networks, signals are propagated from the input layer
through the hidden layer to the output layer. The peculiarity of
ERNN is having the context layer, which is a special case of
the hidden layer. The context layer interacts only with nodes in
the hidden layer and not with those in input or output layers.
Nodes in the context layer depend only on the activation of
nodes in hidden layer from the previous input. The Elman
network has exactly the same number of nodes in the hidden
and context layers. The output of each node in the hidden layer
has individual copy in the context layer. The value of context
node is used as an extra input signal for all the nodes in hidden
layer for the next step. For this reason, the context layer
provides the network with memory from the previous itera-
tion. In the forward connection, the context layer is a group of
internal input nodes and acts like input layer, whereas in the
feedback connections the context layer can provide the net-
work with dynamic memory.

The simple architecture of an ERNN is shown in Fig. 1. The
dynamics of ERNN are described by the difference equation:

Xh k þ 1ð Þ ¼ S WcXc k þ 1ð Þ þWIUðkÞf g ð2Þ

Xc k þ 1ð Þ ¼ WrXhðkÞ ð3Þ

Y k þ 1ð Þ ¼ W0Xh k þ 1ð Þ ð4Þ

where S is a hyperbolic tangent function; U(k) and Y(k) are
the input and the output of the network at a discrete time k; X c

and X h are the nodes of the context and the hidden layers; Wc,

WI, Wr andWo are the weight matrices for the context-hidden,
input-hidden, hidden-context and hidden-output layer interfa-
ces, respectively. In general, the weights from the hidden layer
to the context layer, Wr, are set to unity; i.e., after the outputs
of the hidden nodes have been computed, these current values
are copied exactly into the corresponding context nodes via
the recurrent connection for the next time step. Thus, the
context layer provides the network with memory from previ-
ous iterations. Training of the Elman network is performed by
the fast back-propagation algorithm.

ICA-ERNN Arithmetic Algorithm

The ICA-ERNN algorithm can be summarized as follows:

1. The whole set of fluorescence spectra obtained from
standard mixtures is used to build the experimental data
matrix D.

2. The matrix D is decomposed into the mixing matrix A
and independent source matrix S. The matrix S, which
is also called the independent components of the ob-
served data, are assumed to be non-Gaussian and mutu-
ally independent. Here, independence means the
information carried by one component cannot carry
any information from the others. Statistically this means
that the join probability is obtained as the product of the
probability of each of them. A is the mixing matrix of
weighting coefficients related to the corresponding con-
centrations. The mixing matrix A, derived from ICA,
was used as input data to ERNN.

3. ERNN was proposed for generalizing the regression
model in order to calibrate between its inputs and the
desired outputs. The mixing matrix A, derived from
ICA, was used as input data to the ERNN. ERNN can
be trained with gradient descent back-propagation (BP).
Here, a fast algorithm was selected as a suitable algo-
rithm so that a more complex and computationally
expensive algorithm was not required.

A programs PICAERNN was designed to perform the si-
multaneous spectrofluorimetric multicomponent determination.

Experimental

Apparatus and Reagents

All experiments was performed on a RF-5301 PC fluo-
rescence spectrophotometer(Shimadzu,Japan), equipped
with a 150 W Xenon lamp. A Lenovo Pentium IV
microcomputer was used for all calculations. pH

Output

Input

Hidden

Context

Fig. 1 Simple plot of the ERNN architecture
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measurements were made with a pH-3B digital pH
meter with a glass-saturated calomel dual electrode.
All reagents were of analytical reagent grade. Doubly
distilled and deionized water was used. Stock standard
solutions of 1 gL−1 of biphenyl, naphthalene and ben-
zotriazol were prepared from correspondent reagents
with alcohol and water as solvents. Standard solutions
were then prepared from the stock standard solutions by
serial dilution as required. pH06.50 Brittron-Robinson
buffer solution was prepared by sodium hydroxide and
mix acids (phosphoric acid, acetic acid and boric acid).

Procedure

A series of mixed standard solutions containing various
ratios of biphenyl, naphthalene and benzotriazol was

prepared in 25 mL standard flasks; 5.00 mL of
Brittron-Robinson buffer solution (pH06.50) were added
and diluted with distilled water to the mark. The sol-
utions were placed in the quartz cuvettes with a path
length of 1 cm. With excitation wavelength of 275 nm,
fluorescence emission spectra were measured between
290.0 nm and 430.0 nm at 0.2 nm intervals. Experi-
mental data were saved in ASCII format and trans-
formed to a personal computer for succeeding
utilization. The whole set of fluorescence emission spec-
tra obtained in 16 standard mixtures was used to build
up the matrix D. Using the same procedures, a Du

matrix for unknown mixtures was built up. Experimental
conditions used for fluorescence spectra were as follows: scan
rate, high; excitation wavelength, 275 nm; excitation and
emission slit widths, 10 nm; sensitivity, high.

Fig. 2 Excitation spectra of 1:
biphenyl (1.2 μg mL−1) 2:
naphthalene (1.2 μg mL−1) 3:
benzotriazol (12 μg mL−1) 4:
their mixture

Fig. 3 Emission spectra of 1:
biphenyl (1.2 μg mL−1) 2:
naphthalene(1.2 μg mL−1) 3:
benzotriazol (120 μg mL−1) 4:
their mixture
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Results and Discussion

Absolute and relative standard errors of prediction (SEP and
RSEP) were used as the criteria for comparing the perform-
ances of the test methods [4].

Excitation and Emission Spectra Characteristics

Figures 2 and 3 show at pH06.50 the excitation spectra and
the emission spectra of biphenyl, naphthalene and benzo-
triazol and their mixed solution, respectively. It can be seen
from Figs. 2 and 3 that the excitation spectra and the
emission spectra of these three compounds are seriously
overlapped in the wavelength ranges. The Fig. 3 indicated
that the maximum emission wavelengths of biphenyl, naph-
thalene and benzotriazol were 312 nm, 331 nm and 353 nm
respectively. The emission spectra of their mixture were
severely overlapped and exhibited only one peak for which
maximum emission wavelength is at 338 nm. Thus, conven-
tional fluorimetric methods cannot perform direct determi-
nation without previous separation.

Optimization of the Experimental Conditions

The optimal experimental conditions for this system were se-
lected experimentally. The selection of excitation wavelength is

one of the most important steps for spectrofluorimetric analysis
of multicomponent mixtures. Referring to the excitation spectra
(Fig. 2), we selected the wavelength range of 220.0 nm and
320.0 nm as experimental range, in which each individual
excitation spectrum was selected, respectively, then the effect
of the different excitation wavelength on fluorescence intensi-
ties of emission spectra scanned were tested. After test, excita-
tion wavelength 275 nm was determined. Fluorescence signals
are very complex, likely to interference and scattering, and
prone to overlap. In order to eliminate partly these effects, the
selection of the wavelength range of emission spectra is very
necessary. After trial, with excitation wavelength 275 nm, emis-
sion spectra wavelength range between 290.0 nm and 430.0 nm
was chosen, since the three detected compounds have stable
fluorescence intensities and include their whole information in
this wavelength range as well as first-order and second-order
Rayleigh scattering can be avoided. The effect of pH on this
experimental system was evaluated over the range of pH
5.00~7.50. After trials, the biphenyl, naphthalene and benzo-
triazol had stable fluorescence intensity within the range of pH
5.25~7.50, 5.25~7.00 and 5.50~7.00, respectively. Therefore,
buffer solution (pH06.50) was used in this case. The influence
of the amount of buffer solution on the fluorescence signals was
investigated in the range of 1.00–6.00 ml, after examination,
final volume 5.00 of the buffer solution was chose for providing
adequate buffer capacity. The selections of instrumental param-
eters on this experimental system were also investigated. Se-
lected optimal experimental conditions were the same as those
described in experimental procedure.

An ICA-Based ERNN Regression

The judicious choice of network structure and process param-
eters plays an important role in successfully obtaining a reli-
able result by the ICA-ERNN method. Five parameters were
optimized in the ICA-ERNN training: the number of ICs,
number of hidden nodes, the initial learning rate, the momen-
tum and the sum squared error (SSE) goal. The first one are

Table 1 ERNN training parameters

Training parameters Value

Initial learning rate 0.001

Learning rate increase 1.05

Learning rate decrease 0.7

Momentum constant 0.95

Maximum error ratio 1.04

Performance goal (SSE) 0.0001

Table 2 Composition of the
training set

I: biphenyl; II: naphthalene;III:
benzotriazol

Sample No. Concentration (μg mL−1) Sample No. Concentration (μg mL−1)

I II III I I III

1 0.200 0.120 0.960 9 1.000 0.120 7.200

2 0.200 0.600 4.800 10 1.000 0.600 9.600

3 0.200 1.000 7.200 11 1.000 1.000 0.960

4 0.200 1.400 9.600 12 1.000 1.400 4.800

5 0.600 0.120 4.800 13 1.400 0.120 9.600

6 0.600 0.600 0.960 14 1.400 0.600 7.200

7 0.600 1.000 9.600 15 1.400 1.000 4.800

8 0.600 1.400 7.200 16 1.400 1.400 0.960
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associated with ICA and the other four are required by the
ERNN network. It is possible to use the predictive parameters
SEP and RSEP to find the optimum choice of functions. ICA
is a newly developed signal processing technique aiming at
solving related blind source separation (BSS) problem. ICA
focuses to decompose an observed mixture data into a linear
mixture of a priori unknown source signals assuming that they
are statistically independent. The mixing matrix, which repre-
sents the relative concentration level of the ICs, was obtained
by the ICA. This proposed method combines ICA and ERNN
regression to make dimension reduction and to extract ICs and
mixing matrix from observed complex signals as well as to
enhance the quality of the regression. Selection of the number
of ICs is one of the most important steps that must be
performed in ICA-based methods. In principle, the number
of ICs is equal to the number of chemical components in the
observed mixture data matrix. Thus, this number is a key
parameter to ensure the correctness of this method. The mix-
ing matrix A, resulted from ICA, was used as input data to
ERNN. ERNN has the ability of learning from examples
without any knowledge of the model type. In ERNN, the so-
called context layer was added to the conventional feed for-
ward neural network and provides the network with memory.
The context layer interacts only with the nodes of the hidden
layer and not with the input and output layers. The feedback
loops pass from the output of the hidden layer to the context

layer. The context layer simply holds a copy of the activations
of the hidden layer from the previous step and provides the
network with memory. In fact, ERNN is an extension of
MLFN, and like MLFN the optimal architecture and parame-
ters must be chosen. The transfer functions for the nodes in the
hidden and output layer are hyperbolic tangent functions and
linear functions, respectively. ANN utilizes the weight matri-
ces to performmathematical transformation of the input vector
into the output vector. The process of adapting the weights to
optimum values is called training. The training of a neural
network is a numerical search for the minimum in an error cost
function. In this case, the sum squared error (SSE) function is
used as the criterion when monitoring the training process.
The training is usually stopped when the network reaches
predefined SSE goal. As training progresses, the SSE is cal-
culated after a certain number of epochs. A statistical graph of
the SSE against the epochs was plotted while monitoring the
progress of training. A number of learning algorithms can be
used to train a neural network. The fast back-propagation of
errors learning algorithm was used in this case. Since the input
and output of the network are fixed by the problem studied,
the only layer of which size was yet to be determined was the
hidden layer. There is no theoretical rule concerning the
choice of the number of hidden nodes, since this parameter
depends on the complexity of the problem. The selection of
nodes in hidden layers was empirical; 1 to 16 hidden nodes
were tested. The lowest SEP value was obtained with 8 hidden
nodes. Thus, 8 is the optimal number of hidden layer nodes. A
self-adaptive learning rate and a momentum term were
employed in the fast back propagation algorithm. If the learn-
ing rate was too large, the network would become unstable
and the results were of either high prediction error or bad
convergent behavior. On the other hand, if the learning rate
was too small, the training time would be excessively long.
The fast BP algorithm has the ability to self-adjust the learning
rate. The adaptive learning rate will attempt to keep the
learning rate as large as possible while keeping the learning
stable. Thus, the learning rate is varied automatically

Table 3 Actual concentration
and percentage recovery of the
unknowns

I: biphenyl; II: naphthalene; III:
benzotriazol

Sample No. Actual concentration (μg mL−1) Recovery (%) ICA-ERNN

I II III I II III

1 0.400 0.400 2.400 107.6 79.7 101.9

2 0.400 0.800 6.000 99.9 99.8 100.4

3 0.400 1.200 8.400 119.1 100.1 99.5

4 0.800 0.400 6.000 104.4 76.1 100.5

5 0.800 0.800 8.400 105.9 87.7 100.4

6 0.800 1.200 2.400 120.1 94.3 97.3

7 1.200 0.400 8.400 102.0 70.3 100.7

8 1.200 0.800 2.400 111.6 110.4 94.6

9 1.200 1.200 6.400 78.7 101.1 103.4

Table 4 RSEP values for biphenyl, naphthalene and benzotriazol
system by the three methods

Methods RSEP (%)

I II III Total compounds

ICA-ERNN 13.4 8.74 1.46 2.64

ERNN 18.9 27.1 4.96 6.68

PLS 15.3 11.4 9.92 10.1

I: biphenyl; II: naphthalene; III: benzotriazol
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according to whether or not the error ratio of new to old error
is more than a fixed maximum error ratio as the training
progresses. The initial learning rate and other training param-
eters were selected to improve the quality of the training by
trial and error. The training parameters are shown in Table 1.
The momentum constant gives the learning process a certain
capacity for inertia and enables the network to avoid partial
minima efficiently. The momentum constant was adjusted
from 0.10 to 1.00. The relation between the RSEP and the
momentum constant was calculated for all components. It was
found that when the momentum value was 0.95, the RSEP
showed fewer errors, and the network achieved faster conver-
gence. After trials, the number of ICs03, the number of
hidden nodes08, initial adapted learning rate00.001,
momentum00.95 and the SSE goal00.0001 were selected
as optimal parameters.

A training set of 16 samples formed by the mixture of
biphenyl, naphthalene and benzotriazol was designed accord-
ing to four-level orthogonal array design with the L16 (45)
matrix. Table 2 summarizes the composition of the training
set. The fluorescence emission spectra were measured between
290 nm and 430 nm at 0.2 nm intervals using 275 nm as the
excitation wavelength. The whole set of fluorescence emission
spectra obtained in 16 standard mixtures was used to build up
the matrix D. A set of 9 synthetic unknown samples were
measured in the same way as the training set and arranged in
matrix Du. Using program PICAERNN, the concentrations of
biphenyl, naphthalene and benzotriazol for a test set were
calculated and actual concentrations and recoveries of each
components are listed in Table 3. All the experimental values
in Table 3 were means of three replicates. The experimental
results showed that the RSEP for all components were 2.64 %.

A Comparison of ICA-ERNN, ERNN and PLS Methods

In order to evaluate the ICA-ERNN method, three methods
(ICA-ERNN, ERNN and PLS) were tested in the study with
a set of synthetic unknown samples. The RSEP for the three
methods are given in Table 4. The RSEP for all components
with ICA-ERNN, ERNN and PLS were 2.64 %, 6.68 % and
10.1 %, respectively. From Table 4, it can be seen that ICA-
ERNN is successful at the simultaneous spectrofluorimetric
determination of overlapping peaks and can deliver better-
calculated results than ERNN and PLS; the RSEP for all
components were 2.64 %.

Conclusion

A method named ICA-ERNN was developed and employed
to perform the automatic calculations for the simultaneous
spectrofluorimetric determination of biphenyl, naphthalene
and benzotriazol. Fluorescence spectra of these compounds

are strongly overlapped, which does not permit direct deter-
mination without prior separation by conventional spectro-
fluorimetry. The ICA-ERNN method relies on the concept
of combining the idea of ICA denoising with ERNN calibra-
tion for enhancing the noise removal ability and the quality of
regression. The proposed method combines ICA, which was
used as a tool for reducing the dimension of raw fluorescence
spectra and extracting information from the observed mixture
spectra, and ERNN, which provides calibration model and
performs for enhancing the quality of regression. This method
overcomes the difficulty imposed by overlapping fluorescence
spectra without prior separation. The method can efficiently
reduce model complexity and at the same time enhance the
performance of the calibration. The ICA-ERNN method has
been shown to be a successful approach to the simultaneous
spectrofluorimetric determination of biphenyl, naphthalene
and benzotriazol and gives significantly improved perfor-
mance of determination comparing with ERNN and PLS.
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